Make more informed purchasing decisions with our new product availability and delivery estimate feature, now available on all product pages, in your cart, and during checkout.
Sign In
New to ºÚÁϳԹÏ?
Register for an account to quickly and easily purchase products online and for one-click access to all educational content.
Thank you for your interest in this product.
Please provide us with your contact information and your local representative
will contact you with a customized quote. Where appropriate, they can also assist you with a(n):
Estimated delivery time for your area
Product sample or exclusive offer
In-lab demonstration
By submitting this form, you are providing your consent to ºÚÁÏ³Ô¹Ï Canada Inc. and its subsidiaries and affiliates (“ºÚÁϳԹÏâ€) to collect and use your information, and send you newsletters and emails in accordance with our privacy policy. Please contact us with any questions that you may have. You can unsubscribe or change your email preferences at any time.
Dasatinib is a potent, ATP-competitive tyrosine kinase inhibitor. It is specific for SRC/ABL kinases, for example, ABL, SRC, LCK, and YES with IC₅₀ values of < 1.0, 0.5, 0.4 and 0.5 nM, respectively, and also demonstrates activity against KIT with an IC₅₀ = 5.0 nM (Lombardo et al.; Davis et al.) Dasatinib is a second-generation inhibitor of the oncogenic tyrosine kinase BCR-ABL with 325-fold more potency than imatinib, and is also able to inhibit imatinib-resistant BCR-ABL mutants (Tokarski et al.). It also inhibits a large number of other kinases (76 of 148 kinases tested) when screened at 10 μM (Carter et al.).
CANCER RESEARCH
· Inhibits proliferation in cell lines derived from chronic myeloid leukemia (CML), prostate, breast, and colon tumors (Lombardo et al.).
· Inhibits proliferation of cells with imatinib-resistant BCR-ABL mutations (Shah et al.).
· Inhibits tumor growth and development of lymph node metastases in orthotopic nude mouse models of prostate cancer (Park et al.).
· Induces cell-cycle arrest and apoptosis and decreases growth in thyroid cancer cells (Chan et al.).
· Inhibits production of extracellular matrix proteins in dermal fibroblasts and prevents development of bleomycin-challenge-induced fibrosis in mice (Distler & Distler; Akhmetshina et al.).
Cell Type
Cancer Cells and Cell Lines, Leukemia/Lymphoma Cells
Targeted inhibition of Src kinase with dasatinib blocks thyroid cancer growth and metastasis.
Chan CM et al.
Clinical cancer research : an official journal of the American Association for Cancer Research 2012
Abstract
PURPOSE: There are no effective therapies for patients with poorly differentiated papillary thyroid cancer (PTC) or anaplastic thyroid cancer (ATC), and metastasis to the bone represents a significantly worse prognosis. Src family kinases (SFKs) are overexpressed and activated in numerous tumor types and have emerged as a promising therapeutic target, especially in relation to metastasis. We recently showed that Src is overexpressed and activated in thyroid cancer. We therefore tested whether inhibition of Src with dasatinib (BMS-354825) blocks thyroid cancer growth and metastasis. EXPERIMENTAL DESIGN: The effects of dasatinib on thyroid cancer growth, signaling, cell cycle, and apoptosis were evaluated in vitro. The therapeutic efficacy of dasatinib was further tested in vivo using an orthotopic and a novel experimental metastasis model. Expression and activation of SFKs in thyroid cancer cells was characterized, and selectivity of dasatinib was determined using an Src gatekeeper mutant. RESULTS: Dasatinib treatment inhibited Src signaling, decreased growth, and induced cell-cycle arrest and apoptosis in a subset of thyroid cancer cells. Immunoblotting showed that c-Src and Lyn are expressed in thyroid cancer cells and that c-Src is the predominant SFK activated. Treatment with dasatinib blocked PTC tumor growth in an orthotopic model by more than 90% (P = 0.0014). Adjuvant and posttreatment approaches with dasatinib significantly inhibited metastasis (P = 0.016 and P = 0.004, respectively). CONCLUSION: These data provide the first evidence that Src is a central mediator of thyroid cancer growth and metastasis, indicating that Src inhibitors may have a higher therapeutic efficacy in thyroid cancer, as both antitumor and antimetastatic agents.
Comprehensive analysis of kinase inhibitor selectivity.
Davis MI et al.
Nature biotechnology 2011
Abstract
We tested the interaction of 72 kinase inhibitors with 442 kinases covering textgreater80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model.
Park SI et al.
Cancer research 2008
Abstract
Aberrant expression and/or activity of members of the Src family of nonreceptor protein tyrosine kinases (SFK) are commonly observed in progressive stages of human tumors. In prostate cancer, two SFKs (Src and Lyn) have been specifically implicated in tumor growth and progression. However, there are no data in preclinical models demonstrating potential efficacy of Src inhibitors against prostate cancer growth and/or metastasis. In this study, we used the small molecule SFK/Abl kinase inhibitor dasatinib, currently in clinical trials for solid tumors, to examine in vitro and in vivo effects of inhibiting SFKs in prostate tumor cells. In vitro, dasatinib inhibits both Src and Lyn activity, resulting in decreased cellular proliferation, migration, and invasion. In orthotopic nude mouse models, dasatinib treatment effectively inhibits expression of activated SFKs, resulting in inhibition of both tumor growth and development of lymph node metastases in both androgen-sensitive and androgen-resistant tumors. In primary tumors, SFK inhibition leads to decreased cellular proliferation (determined by immunohistochemistry for proliferating cell nuclear antigen). In vitro, small interfering RNA (siRNA)-mediated inhibition of Lyn affects cellular proliferation; siRNA inhibition of Src affects primarily cellular migration. Therefore, we conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer and that Src and Lyn activities affect different cellular functions required for prostate tumor growth and progression.
PRODUCTS ARE FOR RESEARCH USE ONLY AND NOT INTENDED FOR HUMAN OR ANIMAL DIAGNOSTIC OR THERAPEUTIC USES UNLESS OTHERWISE STATED. FOR ADDITIONAL INFORMATION ON QUALITY AT ºÚÁϳԹÏ, REFER TO WWW.ºÚÁϳԹÏ.COM/COMPLIANCE.