References
Items 121 to 132 of 6390 total
- Lin L and Chan S-O (JUN 2003) The European journal of neuroscience 17 11 2299--312
Perturbation of CD44 function affects chiasmatic routing of retinal axons in brain slice preparations of the mouse retinofugal pathway.
Neurons generated early in development of the ventral diencephalon have been shown to play a key role in defining the midline and the caudal boundary of the optic chiasm in the mouse retinofugal pathway. These functions have been attributed to a surface bound adhesion molecule, CD44 that is expressed in these chiasmatic neurons. In this study, we investigated the effects of perturbing normal CD44 functions on axon routing in brain slice preparations of the mouse retinofugal pathway. Two CD44 antibodies (Hermes-1 and IM7) were used that bind to distinct epitopes on the extracellular domain of the molecule. We found that both antibodies produced dramatic defects in routing of the retinal axons that arrive early in the chiasm. In preparations of embryonic day 13 (E13) and E14 pathways, the crossed component in the chiasm was significantly reduced after antibody treatment. However, such reduction in axon crossing was not observed in E15 chiasm, indicating that the lately generated crossed axons lost their responses to CD44. Furthermore, the anti-CD44 treatment produced a reduction in the uncrossed component in the E15 but not in younger pathways, suggesting a selective response of the lately generated axons, mostly from ventral temporal retina, but not those generated earlier, to the CD44 at the chiasmatic midline in order to make their turn for the uncrossed pathway. These findings provide evidence that a normal function of CD44 molecules in the chiasmatic neurons is essential for axon crossing and axon divergence at the mouse optic chiasm.B. J. Frisch et al. (apr 2019) JCI insight 5Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B.
The bone marrow microenvironment (BMME) contributes to the regulation of hematopoietic stem cell (HSC) function, though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mphis) directs HSC platelet-bias. Mphis from the marrow of aged mice and humans exhibited an activated phenotype, with increased expression of inflammatory signals. Aged marrow Mphis also displayed decreased phagocytic function. Senescent neutrophils, typically cleared by marrow Mphis, were markedly increased in aged mice, consistent with functional defects in Mphi phagocytosis and efferocytosis. In aged mice, Interleukin 1B (IL1B) was elevated in the bone marrow and caspase 1 activity, which can process pro-IL1B, was increased in marrow Mphis and neutrophils. Mechanistically, IL1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice, depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mphis induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mphis and IL1B in the age-associated lineage-skewing of HSCs, and reveals the therapeutic potential of their manipulation as antigeronic targets.Catalog #: Product Name: 19762 EasySep™ Mouse Neutrophil Enrichment Kit 04850 MegaCult™-C Medium with Lipids Catalog #: 19762 Product Name: EasySep™ Mouse Neutrophil Enrichment Kit Catalog #: 04850 Product Name: MegaCult™-C Medium with Lipids Panopoulos AD et al. (JAN 2012) Cell Research 22 1 168--177The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
Metabolism is vital to every aspect of cell function, yet the metabolome of induced pluripotent stem cells (iPSCs) remains largely unexplored. Here we report, using an untargeted metabolomics approach, that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells, and that is characterized by changes in metabolites involved in cellular respiration. Examination of cellular bioenergetics corroborated with our metabolomic analysis, and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency. Interestingly, the bioenergetics of various somatic cells correlated with their reprogramming efficiencies. We further identified metabolites that differ between iPSCs and ESCs, which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming. Our findings are the first to globally analyze the metabolome of iPSCs, and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency, and in evaluating iPSC and ESC equivalence.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Landry P et al. (SEP 2009) Nature structural & molecular biology 16 9 961--6Existence of a microRNA pathway in anucleate platelets.
Platelets have a crucial role in the maintenance of hemostasis as well as in thrombosis and vessel occlusion, which underlie stroke and acute coronary syndromes. Anucleate platelets contain mRNAs and are capable of protein synthesis, raising the issue of how these mRNAs are regulated. Here we show that human platelets harbor an abundant and diverse array of microRNAs (miRNAs), which are known as key regulators of mRNA translation in other cell types. Further analyses revealed that platelets contain the Dicer and Argonaute 2 (Ago2) complexes, which function in the processing of exogenous miRNA precursors and the control of specific reporter transcripts, respectively. Detection of the receptor P2Y(12) mRNA in Ago2 immunoprecipitates suggests that P2Y(12) expression may be subjected to miRNA control in human platelets. Our study lends an additional level of complexity to the control of gene expression in these anucleate elements of the cardiovascular system.Franckowiak G et al. (AUG 1985) European journal of pharmacology 114 2 223--6The optical isomers of the 1,4-dihydropyridine BAY K 8644 show opposite effects on Ca channels.
The optical isomers of the 1,4-dihydropyridine BAY K 8644 were studied in isolated rabbit aorta and heart preparations. The (-)-enantiomer has the known vasoconstricting and positive inotropic properties of the Ca agonistic compound. In contrast, its antipode shows at about 10-50 times higher concentrations the vasodilating and negative inotropic effects of Ca antagonistic drugs. It is concluded that neither simple chemical nor physical actions can be responsible for the opposite effects of Ca antagonistic and Ca agonistic dihydropyridines.Catalog #: Product Name: 72362 (+)-Bay K8644 Catalog #: 72362 Product Name: (+)-Bay K8644 Liu S et al. (JAN 2011) Cancer research 71 2 614--24Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks.
We have used in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSC) and bone marrow-derived mesenchymal stem cells (MSC). We show that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase expressing mesenchymal cells regulate breast CSCs through cytokine loops involving IL6 and CXCL7. In NOD/SCID mice, labeled MSCs introduced into the tibia traffic to sites of growing breast tumor xenografts where they accelerated tumor growth by increasing the breast CSC population. With immunochemistry, we identified MSC-CSC niches in these tumor xenografts as well as in frozen sections from primary human breast cancers. Bone marrow-derived MSCs may accelerate human breast tumor growth by generating cytokine networks that regulate the CSC population.Catalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer 01700 ALDEFLUOR™ Kit 01705 ALDEFLUOR™ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUOR™ Kit Catalog #: 01705 Product Name: ALDEFLUOR™ DEAB Reagent P. Mart\'inez-Rom\'an et al. (jul 2020) Journal of clinical medicine 9 7Hepatitis C Virus Influences HIV-1 Viral Splicing in Coinfected Patients.
Coinfection with hepatitis C virus (HCV) influences HIV reservoir size. However, it is unknown whether this coinfection also induces a higher provirus transcription. Viral transcription is promoted by synergy between cellular factors such as NF-$\kappa$B and the viral regulator Tat. The impact of HCV coinfection on HIV provirus transcription was analyzed in resting (r)CD4 T+ cells (CD3+CD4+CD25-CD69-HLADR-) and rCD4 T cells-depleted PBMCs (rCD4 T- PBMCs) from a multicenter cross-sectional study of 115 cART-treated HIV patients: 42 HIV+/HCV+ coinfected individuals (HIV+/HCV+), 34 HIV+ patients with HCV spontaneous clearance (HIV+/HCV-) and 39 HIV patients (HIV+). Viral transcription was assessed in total RNA through the quantification of unspliced, single spliced, and multiple spliced viral mRNAs by qPCR. Linear correlations between viral reservoir size and viral splicing were determined. A 3-fold increase of multiple spliced transcripts in rCD4 T+ cells of HIV+/HCV+ patients was found compared to HIV+ individuals (p {\textless} 0.05). As Tat is synthesized by multiple splicing, the levels of Tat were also quantified in these patients. Significant differences in single and multiple spliced transcripts were also observed in rCD4 T- PBMCs. Levels of multiple spliced mRNAs were increased in rCD4 T+ cells isolated from HIV+/HCV+ subjects, which could indicate a higher Tat activity in these cells despite their resting state.Catalog #: Product Name: 17962 EasySep™ Human Resting CD4+ T Cell Isolation Kit Catalog #: 17962 Product Name: EasySep™ Human Resting CD4+ T Cell Isolation Kit van den Berg CW et al. ( 2016) 1353 1341 163--80Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate to cardiomyocytes in vitro, offering unique opportunities to investigate cardiac development and disease as well as providing a platform to perform drug and toxicity tests. Initial cardiac differentiation methods were based on either inductive co-culture or aggregation as embryoid bodies, often in the presence of fetal calf serum. More recently, monolayer differentiation protocols have evolved as feasible alternatives and are often performed in completely defined culture medium and substrates. Thus, our ability to efficiently and reproducibly generate cardiomyocytes from multiple different hESC and hiPSC lines has improved significantly.We have developed a directed differentiation monolayer protocol that can be used to generate cultures comprising ˜50% cardiomyocytes, in which both the culture of the undifferentiated human pluripotent stem cells (hPSCs) and the differentiation procedure itself are defined and serum-free. The differentiation method is also effective for hPSCs maintained in other culture systems. In this chapter, we outline the differentiation protocol and describe methods to assess cardiac differentiation efficiency as well as to identify and quantify the yield of cardiomyocytes.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 O'Sullivan S et al. (NOV 2007) Journal of bone and mineral research 22 11 1679--89Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms.
UNLABELLED: Several lines of evidence suggest that imatinib may affect skeletal tissue. We show that inhibition by imatinib of PDGFR signaling in osteoblasts activates osteoblast differentiation and inhibits osteoblast proliferation and that imatinib inhibits osteoclastogenesis by both stromal cell-dependent and direct effects on osteoclast precursors. INTRODUCTION: Imatinib mesylate, an orally active inhibitor of the c-abl, c-kit, and platelet-derived growth factor receptor (PDGFR) tyrosine kinases, is in clinical use for the treatment of chronic myeloid leukemia (CML) and gastrointestinal stromal cell tumors. Interruption of both c-kit and c-abl signaling in mice induces osteopenia, suggesting that imatinib might have adverse effects on the skeleton. However, biochemical markers of bone formation increase in patients with CML starting imatinib therapy, whereas bone resorption is unchanged, despite secondary hyperparathyroidism. We assessed the actions of imatinib on bone cells in vitro to study the cellular and molecular mechanism(s) underlying the skeletal effects we observed in imatinib-treated patients. MATERIALS AND METHODS: Osteoblast differentiation was assessed using a mineralization assay, proliferation by [(3)H]thymidine incorporation, and apoptosis by a TUNEL assay. Osteoclastogenesis was assessed using murine bone marrow cultures and RAW 264.7 cells. RT and multiplex PCR were performed on RNA prepared from human bone marrow samples, osteoblastic cells, and murine bone marrow cultures. Osteoprotegerin was measured by ELISA. RESULTS: The molecular targets of imatinib are expressed in bone cells. In vitro, imatinib increases osteoblast differentiation and prevents PDGF-induced inhibition of this process. Imatinib inhibits proliferation of osteoblast-like cells induced by serum and PDGF. In murine bone marrow cultures, imatinib inhibits osteoclastogenesis stimulated by 1,25-dihydroxyvitamin D(3) and partially inhibits osteoclastogenesis induced by RANKL and macrophage-colony stimulating factor. Imatinib partially inhibited osteoclastogenesis in RANKL-stimulated RAW-264.7 cells. Treatment with imatinib increases the expression of osteoprotegerin in bone marrow from patients with CML and osteoblastic cells. CONCLUSIONS: Taken together with recent in vivo data, these results suggest a role for the molecular targets of imatinib in bone cell function, that inhibition by imatinib of PDGFR signaling in osteoblasts activates bone formation, and that the antiresorptive actions of imatinib are mediated by both stromal cell-dependent and direct effects on osteoclast precursors.Catalog #: Product Name: 72532 Imatinib Catalog #: 72532 Product Name: Imatinib Fabian I et al. (JAN 1987) Leukemia research 11 7 635--40In-vitro growth and differentiation of marrow cells from myelodysplastic patients in the presence of a retinoidal benzoic acid derivative.
The proliferation and differentiation effects of the synthetic retinoid TTNPB and of 13-cis retinoic acid (RA) on hemopoietic progenitors from bone marrow of myelodysplastic syndrome (MDS) patients were compared. The addition of TTNPB or RA to culture plates containing MDS patient's marrow cells stimulated myeloid colony (CFU-C) growth and caused a significant increase in granulocytic colonies (CFU-G). In the presence of RA the increase in CFU-G was statistically insignificant. Cellular differentiation studies in liquid suspension culture revealed that the two retinoic acid analogues cause a marked decrease in immature granulocytes and an increase in mature granulocytes. There was further an increase in the number of cells that reacted positively with monoclonal antibodies (McAb) binding specifically to granulocytes (B4,3,B13,9 and Leu M4) and a decrease in the percentage of cells reacting with the McAb against Ia-like determinants. These findings indicate that TTNPB is as active as RA in stimulating the growth of hemopoietic progenitors from MDS patients and in enhancing granulocytic differentiation in liquid culture.Catalog #: Product Name: 72892 TTNPB Catalog #: 72892 Product Name: TTNPB Lee SB et al. (JAN 2016) Nature 529 7585 172--7An ID2-dependent mechanism for VHL inactivation in cancer.
Mechanisms that maintain cancer stem cells are crucial to tumour progression. The ID2 protein supports cancer hallmarks including the cancer stem cell state. HIFα transcription factors, most notably HIF2α (also known as EPAS1), are expressed in and required for maintenance of cancer stem cells (CSCs). However, the pathways that are engaged by ID2 or drive HIF2α accumulation in CSCs have remained unclear. Here we report that DYRK1A and DYRK1B kinases phosphorylate ID2 on threonine 27 (Thr27). Hypoxia downregulates this phosphorylation via inactivation of DYRK1A and DYRK1B. The activity of these kinases is stimulated in normoxia by the oxygen-sensing prolyl hydroxylase PHD1 (also known as EGLN2). ID2 binds to the VHL ubiquitin ligase complex, displaces VHL-associated Cullin 2, and impairs HIF2α ubiquitylation and degradation. Phosphorylation of Thr27 of ID2 by DYRK1 blocks ID2-VHL interaction and preserves HIF2α ubiquitylation. In glioblastoma, ID2 positively modulates HIF2α activity. Conversely, elevated expression of DYRK1 phosphorylates Thr27 of ID2, leading to HIF2α destabilization, loss of glioma stemness, inhibition of tumour growth, and a more favourable outcome for patients with glioblastoma.Catalog #: Product Name: 05700 NeuroCult™ Basal Medium (Mouse & Rat) 05701 NeuroCult™ Proliferation Supplement (Mouse & Rat) 05702 NeuroCult™ Proliferation Kit (Mouse & Rat) Catalog #: 05700 Product Name: NeuroCult™ Basal Medium (Mouse & Rat) Catalog #: 05701 Product Name: NeuroCult™ Proliferation Supplement (Mouse & Rat) Catalog #: 05702 Product Name: NeuroCult™ Proliferation Kit (Mouse & Rat) Lam BS et al. (JAN 2011) Blood 117 4 1167--75Pharmacologic modulation of the calcium-sensing receptor enhances hematopoietic stem cell lodgment in the adult bone marrow.
The ability of hematopoietic stem cells (HSCs) to undergo self-renewal is partly regulated by external signals originating from the stem cell niche. Our previous studies with HSCs obtained from fetal liver of mice deficient for the calcium-sensing receptor (CaR) have shown the crucial role of this receptor in HSC lodgment and engraftment in the bone marrow (BM) endosteal niche. Using a CaR agonist, Cinacalcet, we assessed the effects of stimulating the CaR on the function of murine HSCs. Our results show that CaR stimulation increases primitive hematopoietic cell activity in vitro, including growth in stromal cell cocultures, adhesion to extracellular matrix molecules such as collagen I and fibronectin, and migration toward the chemotactic stimulus, stromal cell-derived factor 1α. Receptor stimulation also led to augmented in vivo homing, CXCR4-mediated lodgment at the endosteal niche, and engraftment capabilities. These mechanisms by which stimulating the CaR dictates preferential localization of HSCs in the BM endosteal niche provide additional insights into the fundamental interrelationship between the stem cell and its niche. These studies also have implications in the area of clinical stem cell transplantation, where ex vivo modulation of the CaR may be envisioned as a strategy to enhance HSC engraftment in the BM.Catalog #: Product Name: 03434 MethoCult™ GF M3434 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Items 121 to 132 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.