References
Items 241 to 252 of 6390 total
- Stylianou J et al. ( 2006) Cytotherapy 8 1 57--61
Novel cryoprotectant significantly improves the post-thaw recovery and quality of HSC from CB.
BACKGROUND Hematopoietic stem cells (HSC) have traditionally been frozen using the cryoprotectant DMSO in dextran-40, saline or albumin. However, the process of freezing and thawing results in loss of HSC numbers and/or function. METHODS This study investigated the use of CryoStor for the freezing of HSC from cord blood (CB). CB donations (n = 30) were collected under an Institutional Ethics Committee-approved protocol, volume reduced and frozen using three different methods of cryoprotection. Aliquots were frozen with either 10% DMSO in dextran-40, 10% DMSO in CryoStor or 5% DMSO in CryoStor. Prior to freezing samples were separated for nucleated cell (NC) and CD34+ counts and assessment of CD34+ viability. Aliquots were frozen and kept in vapor phase nitrogen for a minimum of 72 h. Vials were rapidly thawed at 37 degrees C and tested for NC and CD34+ counts and CD34+ viability and colony-forming unit (CFU) assay. RESULTS Cells frozen with CryoStor in 10% DMSO had significantly improved NC (P < 0.001), CD34+ recovery, viable CD34+ (P < 0.001) and CFU numbers (P < 0.001) compared with dextran in 10% DMSO. CryoStor in 5% DMSO resulted in significantly improved NC (P < 0.001) and CFU (P < 0.001). DISCUSSION These results suggest that improved HSC recovery, viability and functionality can be obtained using CryoStor with 10% DMSO and that similar if not better numbers can be obtained with 5% DMSO compared with dextran-40 with 10% DMSO.Catalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 Encinas JM et al. (MAY 2006) Proceedings of the National Academy of Sciences of the United States of America 103 21 8233--8Fluoxetine targets early progenitor cells in the adult brain.
Chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. This increase in the production of new neurons may be required for the behavioral effects of antidepressants. However, it is not known which class of cells within the neuronal differentiation cascade is targeted by the drugs. We have generated a reporter mouse line, which allows identification and classification of early neuronal progenitors. It also allows accurate quantitation of changes induced by neurogenic agents in these distinct subclasses of neuronal precursors. We use this line to demonstrate that the selective serotonin reuptake inhibitor antidepressant fluoxetine does not affect division of stem-like cells in the dentate gyrus but increases symmetric divisions of an early progenitor cell class. We further demonstrate that these cells are the sole class of neuronal progenitors targeted by fluoxetine in the adult brain and suggest that the fluoxetine-induced increase in new neurons arises as a result of the expansion of this cell class. This finding defines a cellular target for antidepressant drug therapies.Gué et al. (JUN 2017) Diabetes 66 6 1470--1478Functional Human Beige Adipocytes From Induced Pluripotent Stem Cells.
Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from human induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes, our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin sensitive and display beige-specific markers and functional properties, including upregulation of thermogenic genes, increased mitochondrial content, and increased oxygen consumption upon activation with cAMP analogs. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue, capable of β-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Chang M-Y et al. (AUG 2014) Stem cell reports 3 2 353--64Doxycycline enhances survival and self-renewal of human pluripotent stem cells.
We here report that doxycycline, an antibacterial agent, exerts dramatic effects on human embryonic stem and induced pluripotent stem cells (hESC/iPSCs) survival and self-renewal. The survival-promoting effect was also manifest in cultures of neural stem cells (NSCs) derived from hESC/iPSCs. These doxycycline effects are not associated with its antibacterial action, but mediated by direct activation of a PI3K-AKT intracellular signal. These findings indicate doxycycline as a useful supplement for stem cell cultures, facilitating their growth and maintenance. View PublicationCatalog #: Product Name: 85850 ձ™1 07920 䱫մ™ 07909 Collagenase Type IV (1 mg/mL) Catalog #: 85850 Product Name: ձ™1 Catalog #: 07920 Product Name: 䱫մ™ Catalog #: 07909 Product Name: Collagenase Type IV (1 mg/mL) Lian R-L et al. (FEB 2016) Molecular and cellular biochemistry 413 1-2 69--85Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells.
Human adipose-derived stem cells (hASCs) become an appealing source for regenerative medicine. However, with the multi-passage or cryopreservation for large-scale growth procedures in terms of preclinical and clinical purposes, hASCs often reveal defective cell viability, which is a major obstacle for cell therapy. In our study, the effects of induced pluripotent stem cells-derived conditioned medium (iPS-CM) on the proliferation and anti-apoptosis in hASCs were investigated. hASCs at passage 1 were identified by the analysis of typical surface antigens with flow cytometry assay and adipogenic and osteogenic differentiation. The effect of iPS-CM on the proliferation in hASCs was analyzed by cell cycle assay and Ki67/P27 quantitative polymerase chain reaction analysis. The effect of iPS-CM on the anti-apoptosis of hASCs irradiated by 468 J/m(2) of ultraviolet C was investigated by annexin v/propidium iodide analysis, mitochondrial membrane potential assay, intracellular reactive oxygen species assay, Western blotting and caspase activity assays. The effect of iPS-CM on the surface antigen expressions of hASCs was analyzed using flow cytometry assay. The levels of Activin A and bFGF in culture supernatant of hASCs with different treatments were also detected by enzyme-linked immunosorbent assay. iPS-CM promoted proliferation and inhibited apoptosis of hASCs. This discovery demonstrates that iPS-CM might be used as one of the available means to overcome the propagation obstacle for hASCs and make for large-scale growth procedures in terms of preclinical and clinical purposes. View PublicationCatalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Yeo C et al. (SEP 2009) Regenerative Medicine 4 5 689--696Ficoll-Paque™ versus ⳾DZ™: a comparative study of two density gradient media for therapeutic bone marrow mononuclear cell preparations
AIMS Contradictory outcomes from recent clinical trials investigating the transplantation of autologous bone marrow mononuclear cell (BM-MNC) fraction containing stem/progenitor cells to damaged myocardium, following acute myocardial infarction, may be, in part, due to the different cell isolation protocols used. We compared total BM-MNC numbers and its cellular subsets obtained following isolation using Ficoll-Paque and Lymphoprep - two different density gradient media used in the clinical trials. MATERIALS & METHODS Bone marrow samples were taken from patients entered into the REGENERATE-IHD clinical trial after 5 days of subcutaneous granulocyte colony-stimulating factor injections. Each sample was divided equally for BM-MNC isolation using Ficoll-Paque and Lymphoprep, keeping all other procedural steps constant. Isolated fractions were characterized for hematopoietic stem cells, endothelial progenitor cells, T lymphocytes, B lymphocytes and NK cells using cell surface markers CD34(+), CD133(+)VEGFR2(+), CD45(+)CD3(+), CD45(+)CD19(+) and CD45(+)CD16(+)CD56(+), respectively. There were no significant differences in the absolute numbers and percentage cell recovery of various mononuclear cell types recovered following separation using either density gradient media. Cell viability and the proportion of various cell phenotypes investigated were similar between the two media. They were also equally efficient in excluding unwanted red blood cells, granulocytes and platelets from the final cell products. CONCLUSION We demonstrated that the composition and quantity of cell types found within therapeutic BM-MNC preparations for use in clinical trials of cardiac stem cell transplantation are not influenced by the type of density gradient media used when comparing Ficoll-Paque and Lymphoprep.Catalog #: Product Name: 07801 ⳾DZ™ Catalog #: 07801 Product Name: ⳾DZ™ Pei Y et al. (MAR 2015) Scientific reports 5 9205A platform for rapid generation of single and multiplexed reporters in human iPSC lines.
Induced pluripotent stem cells (iPSC) are important tools for drug discovery assays and toxicology screens. In this manuscript, we design high efficiency TALEN and ZFN to target two safe harbor sites on chromosome 13 and 19 in a widely available and well-characterized integration-free iPSC line. We show that these sites can be targeted in multiple iPSC lines to generate reporter systems while retaining pluripotent characteristics. We extend this concept to making lineage reporters using a C-terminal targeting strategy to endogenous genes that express in a lineage-specific fashion. Furthermore, we demonstrate that we can develop a master cell line strategy and then use a Cre-recombinase induced cassette exchange strategy to rapidly exchange reporter cassettes to develop new reporter lines in the same isogenic background at high efficiency. Equally important we show that this recombination strategy allows targeting at progenitor cell stages, further increasing the utility of the platform system. The results in concert provide a novel platform for rapidly developing custom single or dual reporter systems for screening assays. View PublicationCatalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Christopher MJ et al. (FEB 2011) The Journal of experimental medicine 208 2 251--60Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice.
Granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing cytokine, induces hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow in a cell-nonautonomous fashion. This process is mediated, in part, through suppression of osteoblasts and disruption of CXCR4/CXCL12 signaling. The cellular targets of G-CSF that initiate the mobilization cascade have not been identified. We use mixed G-CSF receptor (G-CSFR)-deficient bone marrow chimeras to show that G-CSF-induced mobilization of HSPCs correlates poorly with the number of wild-type neutrophils. We generated transgenic mice in which expression of the G-CSFR is restricted to cells of the monocytic lineage. G-CSF-induced HSPC mobilization, osteoblast suppression, and inhibition of CXCL12 expression in the bone marrow of these transgenic mice are intact, demonstrating that G-CSFR signals in monocytic cells are sufficient to induce HSPC mobilization. Moreover, G-CSF treatment of wild-type mice is associated with marked loss of monocytic cells in the bone marrow. Finally, we show that bone marrow macrophages produce factors that support the growth and/or survival of osteoblasts in vitro. Together, these data suggest a model in which G-CSFR signals in bone marrow monocytic cells inhibit the production of trophic factors required for osteoblast lineage cell maintenance, ultimately leading to HSPC mobilization.Catalog #: Product Name: 03434 MethoCult™ GF M3434 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Frecha C et al. (OCT 2009) Blood 114 15 3173--80Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors.
Up to now, no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes, which hampers its application in gene therapy and immunotherapy areas. Here, we report that LVs incorporating measles virus (MV) glycoproteins, H and F, on their surface allowed transduction of 50% of quiescent B cells, which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover, the naive and memory phenotypes of transduced resting B cells were maintained. Importantly, H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells, B-cell chronic lymphocytic leukemia cells, blocked in G(0)/G(1) early phase of the cell cycle. Thus, H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.Catalog #: Product Name: 15021 RosetteSep™ Human T Cell Enrichment Cocktail Catalog #: 15021 Product Name: RosetteSep™ Human T Cell Enrichment Cocktail Ovchinnikov DA et al. (SEP 2014) Stem cell research 13 2 251--261Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro
Optimization of pluripotent stem cell expansion and differentiation is facilitated by biological tools that permit non-invasive and dynamic monitoring of pluripotency, and the ability to select for an undifferentiated input cell population. Here we report on the generation and characterisation of clonal human embryonic stem (HES3, H9) and human induced pluripotent stem cell lines (UQEW01i-epifibC11) that have been stably modified with an artificial EOS(C3+) promoter driving expression of EGFP and puromycin resistance-conferring proteins. We show that EGFP expression faithfully reports on the pluripotency status of the cells in these lines and that antibiotic selection allows for an efficient elimination of differentiated cells from the cultures. We demonstrate that the extinction of the expression of the pluripotency reporter during differentiation closely correlates with the decrease in expression of conventional pluripotency markers, such as OCT4 (POU5F1), TRA-1-60 and SSEA4 when screening across conditions with various levels of pluripotency-maintaining or differentiation-inducing signals. We further illustrate the utility of these lines for real-time monitoring of pluripotency in embryoid bodies and microfluidic bioreactors.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Cai S et al. (APR 2011) Clinical cancer research : an official journal of the American Association for Cancer Research 17 8 2195--206Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity.
PURPOSE: Preclinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However, one of the challenges in screening anticancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens. For example, hematopoietic cells of human origin are particularly sensitive to a variety of chemotherapeutic regimens, but in vivo models to assess potential toxicities have not been developed. In this study, a xenograft model containing humanized bone marrow is utilized as an in vivo assay to monitor hematotoxicity. EXPERIMENTAL DESIGN: A proof-of-concept, temozolomide-based regimen was developed that inhibits tumor xenograft growth. This regimen was selected for testing because it has been previously shown to cause myelosuppression in mice and humans. The dose-intensive regimen was administered to NOD.Cg-Prkdc(scid)IL2rg(tm1Wjl)/Sz (NOD/SCID/γchain(null)), reconstituted with human hematopoietic cells, and the impact of treatment on human hematopoiesis was evaluated. RESULTS: The dose-intensive regimen resulted in significant decreases in growth of human glioblastoma xenografts. When this regimen was administered to mice containing humanized bone marrow, flow cytometric analyses indicated that the human bone marrow cells were significantly more sensitive to treatment than the murine bone marrow cells and that the regimen was highly toxic to human-derived hematopoietic cells of all lineages (progenitor, lymphoid, and myeloid). CONCLUSIONS: The humanized bone marrow xenograft model described has the potential to be used as a platform for monitoring the impact of anticancer therapies on human hematopoiesis and could lead to subsequent refinement of therapies prior to clinical evaluation.Catalog #: Product Name: 03434 MethoCult™ GF M3434 04434 MethoCult™ H4434 Classic 84434 MethoCult™ GF H84434 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 84434 Product Name: MethoCult™ GF H84434 Gage BK et al. (DEC 2015) PLoS ONE 10 12 e0144100The role of ARX in human pancreatic endocrine specification
The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult $$-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.Catalog #: Product Name: 85850 ձ™1 07923 Dispase (1 U/mL) Catalog #: 85850 Product Name: ձ™1 Catalog #: 07923 Product Name: Dispase (1 U/mL) Items 241 to 252 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.