References
Items 61 to 72 of 6390 total
- Chen W et al. (JUN 2014) Scientific reports 4 5404
Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique.
Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening. View PublicationCatalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Behar RZ et al. (NOV 2012) Current protocols in stem cell biology 1 SUPPL.23 Unit 1C.13Adaptation of stem cells to 96-well plate assays: use of human embryonic and mouse neural stem cells in the MTT assay.
Human embryonic stem cells (hESC) are difficult to adapt to 96-well plate assays, such as the MTT assay, because they survive best when plated as colonies, which are not easily counted and plated accurately. Two methods were developed to address this problem. In the first, ROCK inhibitor (ROCKi) was used, which allows accurate counting and plating of single hESC. In the second, small colonies were plated without ROCKi but with adaptations for accurate counting and plating. The MTT assay was also adapted for use with mouse neural stem cells. These methods allow the MTT assay to be conducted rapidly and accurately with high reproducibility between replicate experiments. When screening volatile chemicals in a 96-well plate, vapor effects may occur and dose ranges must be carefully defined. The methods were validated using the NIH assay guidance tool. These methodss could readily be translated to other 96-well plate assay.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Na YJ et al. (SEP 2007) Biochemical pharmacology 74 5 780--6[4-t-butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03) inhibits SCF/c-kit signaling in 501mel human melanoma cells and abolishes melanin production in mice and brownish guinea pigs.
It is well known that c-kit is related to pigmentation as well as to the oncology target protein. The objective of this study was to discover a skin-whitening agent that regulates c-kit activity. We have developed a high-throughput screening system using recombinant human c-kit protein. Approximately 10,000 synthetic compounds were screened for their effect on c-kit activity. Phenyl-imidazole sulfonamide derivatives showed inhibitory activity on c-kit phosphorylation in vitro. The effects of one derivative, [4-t-butylphenyl]-N-(4-imidazol-1-yl phenyl)sulfonamide (ISCK03), on stem-cell factor (SCF)/c-kit cellular signaling in 501mel human melanoma cells were examined further. Pretreatment of 501mel cells with ISCK03 inhibited SCF-induced c-kit phosphorylation dose dependently. ISCK03 also inhibited p44/42 ERK mitogen-activated protein kinase (MAPK) phosphorylation, which is known to be involved in SCF/c-kit downstream signaling. However ISCK03 did not inhibit hepatocyte growth factor (HGF)-induced phosphorylation of p44/42 ERK proteins. To determine the in vivo potency of ISCK03, it was orally administered to depilated C57BL/6 mice. Interestingly, oral administration of ISCK03 induced the dose-dependent depigmentation of newly regrown hair, and this was reversed with cessation of ISCK03 treatment. Finally, to investigate whether the inhibitory effect of ISCK03 on SCF/c-kit signaling abolished UV-induced pigmentation, ISCK03 was applied to UV-induced pigmented spots on brownish guinea pig skin. The topical application of ISCK03 promoted the depigmentation of UV-induced hyperpigmented spots. Fontana-Masson staining analysis showed epidermal melanin was diminished in spots treated with ISCK03. These results indicate that phenyl-imidazole sulfonamide derivatives are potent c-kit inhibitors and might be used as skin-whitening agents.Catalog #: Product Name: 73732 ISCK03 Catalog #: 73732 Product Name: ISCK03 Rudland PS and Hughes CM (JUL 1989) The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 37 7 1087--100Immunocytochemical identification of cell types in human mammary gland: variations in cellular markers are dependent on glandular topography and differentiation.
Antiserum to epithelial membrane antigen and three monoclonal antibodies (MAb) to milk-fat globule membranes immunocytochemically stain only epithelial cells, whereas a fourth reacts also with myoepithelial cells in inter- and intralobular ducts of human breast. Staining with peanut lectin shows a gradual increase for epithelial cells, from little or no staining in ducts through variable staining in ductules to intense staining in secretory alveoli. Antisera and MAb to vimentin, smooth-muscle actin, MAb to the common acute lymphoblastic leukemia antigen and to a glycoprotein of 135 KD stain myoepithelial cells in main ducts, but this staining is reduced in inter- and intralobular ducts and ductules. MAb to epithelial-specific keratin 18 stain a minor population of ductal epithelial cells, the major population of epithelial cells in interlobular (ILD) and extralobular terminal ducts (ETD), and epithelial cells in a minority of ductules. In lactating glands most epithelial cells in ductules are stained, but the alveolar and myoepithelial cells are unstained. Keratin MAb PKK2 and LP34 strongly stain myoepithelial cells, but only a minor population of epithelial cells in main ducts. However, these MAb stain principally the epithelial cells in ILD, ETD, and a minority of ductules. In lactating glands most epithelial cells are stained in ductules, but the myoepithelial and not the alveolar cells are stained intensely in secretory lobules. It is suggested that the unusual staining pattern of cells found principally in the ILD, ETD, and some ductules may represent regions of growth and/or subpopulation(s) of cells intermediate between epithelial and myoepithelial cells.Chen J et al. ( 2016) Stem cell research & therapy 7 1 2Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets.
BACKGROUND: Many retinal degenerative diseases are caused by the loss of retinal ganglion cells (RGCs). Autosomal dominant optic atrophy is the most common hereditary optic atrophy disease and is characterized by central vision loss and degeneration of RGCs. Currently, there is no effective treatment for this group of diseases. However, stem cell therapy holds great potential for replacing lost RGCs of patients. Compared with embryonic stem cells, induced pluripotent stem cells (iPSCs) can be derived from adult somatic cells, and they are associated with fewer ethical concerns and are less prone to immune rejection. In addition, patient-derived iPSCs may provide us with a cellular model for studying the pathogenesis and potential therapeutic agents for optic atrophy.backslashnbackslashnMETHODS: In this study, iPSCs were obtained from patients carrying an OPA1 mutation (OPA1 (+/-) -iPSC) that were diagnosed with optic atrophy. These iPSCs were differentiated into putative RGCs, which were subsequently characterized by using RGC-specific expression markers BRN3a and ISLET-1.backslashnbackslashnRESULTS: Mutant OPA1 (+/-) -iPSCs exhibited significantly more apoptosis and were unable to efficiently differentiate into RGCs. However, with the addition of neural induction medium, Noggin, or estrogen, OPA1 (+/-) -iPSC differentiation into RGCs was promoted.backslashnbackslashnCONCLUSIONS: Our results suggest that apoptosis mediated by OPA1 mutations plays an important role in the pathogenesis of optic atrophy, and both noggin and β-estrogen may represent potential therapeutic agents for OPA1-related optic atrophy.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Wang M et al. (MAR 2015) ACS applied materials & interfaces 7 8 4560--4572In Vitro Culture and Directed Osteogenic Differentiation of Human Pluripotent Stem Cells on Peptides-Decorated Two Dimensional Microenvironment
Human pluripotent stem cells (hPSCs) are a promising cell source with pluripotency and capacity to differentiate into all human somatic cell types. Designing simple and safe biomaterials with an innate ability to induce osteoblastic lineage from hPSCs is desirable to realize their clinical adoption in bone regenerative medicine. To address the issue, here we developed a fully defined synthetic peptides-decorated two dimensional (2D) microenvironment assisted via polydopamine (pDA) chemistry and subsequent carboxymethyl chitosan (CMC) grafting to enhance the culture and osteogenic potential of hPSCs in vitro. The hPSCs including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were successfully cultured on the peptides-decorated surface without Matrigel- and ECM protein-coating and underwent promoted osteogenic differentiation in vitro, determined from the alkaline phosphate (ALP) activity, gene expression, and protein production as well as calcium deposit amount. It was found that directed osteogenic differentiation of hPSCs could be achieved through a peptides-decorated niche. This chemical-defined and safe 2D microenvironment which facilitates proliferation and osteo-differentiation of hPSCs, not only helps to accelerate the translational perspectives of hPSCs, but also provides tissue-specific functions such as directing stem cell differentiation commitment, having great potential in bone tissue engineering and presenting new avenues for bone regenerative medicine.Catalog #: Product Name: 85850 ձ™1 07920 䱫մ™ Catalog #: 85850 Product Name: ձ™1 Catalog #: 07920 Product Name: 䱫մ™ D. Birkl et al. (jul 2019) Mucosal immunology 12 4 909--918TNFalpha promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium.
Pathobiology of several chronic inflammatory disorders, including ulcerative colitis and Crohn's disease is related to intermittent, spontaneous injury/ulceration of mucosal surfaces. Disease morbidity has been associated with pathologic release of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). In this report, we show that TNFalpha promotes intestinal mucosal repair through upregulation of the GPCR platelet activating factor receptor (PAFR) in the intestinal epithelium. Platelet activating factor (PAF) was increased in healing mucosal wounds and its engagement with epithelial PAFR leads to activation of epidermal growth factor receptor, Src and Rac1 signaling to promote wound closure. Consistent with these findings, delayed colonic mucosal repair was observed after administration of a neutralizing TNFalpha antibody and in mice lacking PAFR. These findings suggest that in the injured mucosa, the pro-inflammatory milieu containing TNFalpha and PAF sets the stage for reparative events mediated by PAFR signaling.Catalog #: Product Name: 19359 EasySep™ Human Monocyte Isolation Kit Catalog #: 19359 Product Name: EasySep™ Human Monocyte Isolation Kit Kovats S et al. (NOV 2016) Clinical and experimental immunology 186 2 214--226West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells.
West Nile virus (WNV) infection is a mosquito-borne zoonosis with increasing prevalence in the United States. WNV infection begins in the skin, and the virus replicates initially in keratinocytes and dendritic cells (DCs). In the skin and cutaneous lymph nodes, infected DCs are likely to interact with invariant natural killer T cells (iNKTs). Bidirectional interactions between DCs and iNKTs amplify the innate immune response to viral infections, thus controlling viral load and regulating adaptive immunity. iNKTs are stimulated by CD1d-bound lipid antigens or activated indirectly by inflammatory cytokines. We exposed human monocyte-derived DCs to WNV Kunjin and determined their ability to activate isolated blood iNKTs. DCs became infected as judged by synthesis of viral mRNA and Envelope and NS-1 proteins, but did not undergo significant apoptosis. Infected DCs up-regulated the co-stimulatory molecules CD86 and CD40, but showed decreased expression of CD1d. WNV infection induced DC secretion of type I interferon (IFN), but no or minimal interleukin (IL)-12, IL-23, IL-18 or IL-10. Unexpectedly, we found that the WNV-infected DCs stimulated human iNKTs to up-regulate CD69 and produce low amounts of IL-10, but not proinflammatory cytokines such as IFN-γ or tumour necrosis factor (TNF)-α. Both CD1d and IFNAR blockade partially abrogated this iNKT response, suggesting involvement of a T cell receptor (TCR)-CD1d interaction and type I interferon receptor (IFNAR) signalling. Thus, WNV infection interferes with DC-iNKT interactions by preventing the production of proinflammatory cytokines. iNKTs may be a source of IL-10 observed in human flavivirus infections and initiate an anti-inflammatory innate response that limits adaptive immunity and immune pathology upon WNV infection.Catalog #: Product Name: 19059 EasySep™ Human Monocyte Enrichment Kit Catalog #: 19059 Product Name: EasySep™ Human Monocyte Enrichment Kit Kandasamy M et al. (MAR 2017) Cell and Tissue Research 368 3 531--549Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs)
Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487(LeX), 5750(LeX) and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487(LeX)-, 5750(LeX)- and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs(FGF-2/EGF) derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs(FGF-2/EGF). Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487(LeX), 5750(LeX) and 473HD are promising tools for identifying distinct stages during neural differentiation.Catalog #: Product Name: 85850 ձ™1 05832 STEMdiff™ Neural Rosette Selection Reagent Catalog #: 85850 Product Name: ձ™1 Catalog #: 05832 Product Name: STEMdiff™ Neural Rosette Selection Reagent Shaw RJ et al. (DEC 2005) Science (New York, N.Y.) 310 5754 1642--6The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.
The Peutz-Jegher syndrome tumor-suppressor gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates AMPK [adenosine monophosphate (AMP)-activated protein kinase]. The deletion of LKB1 in the liver of adult mice resulted in a nearly complete loss of AMPK activity. Loss of LKB1 function resulted in hyperglycemia with increased gluconeogenic and lipogenic gene expression. In LKB1-deficient livers, TORC2, a transcriptional coactivator of CREB (cAMP response element-binding protein), was dephosphorylated and entered the nucleus, driving the expression of peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), which in turn drives gluconeogenesis. Adenoviral small hairpin RNA (shRNA) for TORC2 reduced PGC-1alpha expression and normalized blood glucose levels in mice with deleted liver LKB1, indicating that TORC2 is a critical target of LKB1/AMPK signals in the regulation of gluconeogenesis. Finally, we show that metformin, one of the most widely prescribed type 2 diabetes therapeutics, requires LKB1 in the liver to lower blood glucose levels.Catalog #: Product Name: 73252 Metformin Catalog #: 73252 Product Name: Metformin R. Ganugula et al. (jun 2020) Science advances 6 24 eabb3900A highly potent lymphatic system-targeting nanoparticle cyclosporine prevents glomerulonephritis in mouse model of lupus.
Cyclosporine A (CsA) is a powerful immunosuppressant, but it is an ineffective stand-alone treatment for systemic lupus erythematosus (SLE) due to poor target tissue distribution and renal toxicity. We hypothesized that CD71 (transferrin receptor 1)-directed delivery of CsA to the lymphatic system would improve SLE outcomes in a murine model. We synthesized biodegradable, ligand-conjugated nanoparticles [P2Ns-gambogic acid (GA)] targeting CD71. GA conjugation substantially increased nanoparticle association with CD3+ or CD20+ lymphocytes and with intestinal lymphoid tissues. In orally dosed MRL-lpr mice, P2Ns-GA-encapsulated CsA increased lymphatic drug delivery 4- to 18-fold over the ligand-free formulation and a commercial CsA capsule, respectively. Improved lymphatic bioavailability of CsA was paralleled by normalization of anti-double-stranded DNA immunoglobulin G titer, plasma cytokines, and glomerulonephritis. Thus, this study demonstrates the translational potential of nanoparticles that enhance the targeting of lymphatic tissues, transforming CsA into a potent single therapeutic for SLE.Catalog #: Product Name: 07801 ⳾DZ™ 85415 SepMate™-15 (IVD) Catalog #: 07801 Product Name: ⳾DZ™ Catalog #: 85415 Product Name: SepMate™-15 (IVD) Neben S et al. (MAR 1993) Experimental hematology 21 3 438--43Quantitation of murine hematopoietic stem cells in vitro by limiting dilution analysis of cobblestone area formation on a clonal stromal cell line.
Murine hematopoietic stem cells with varying proliferative capacity can be assayed by limiting dilution analysis of cobblestone area" (CA) formation on stromal layers in microlong-term bone marrow cultures. Cobblestone area forming cell (CAFC) frequency determined at early time points (day 7) correlates with mature stem cells measured as day 8 CFU-S�Catalog #: Product Name: 05100 MyeloCult™ H5100 Catalog #: 05100 Product Name: MyeloCult™ H5100 Items 61 to 72 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.